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A new iterative method is given for the numerical solution of the diffusion equation 

in a semi-inhnite medium. 

X/i% = a/ax(DX/ax) 

The nonlinear partial differential equations for unsteady state diffusion problems 
with variable diffusion coefficients are transformed into nonlinear ordinary differential 
boundary value problems. It is shown that the quasilinearization technique (also known 
as the generalized Newton-Raphson method) is an effective tool for solving these non- 
linear ordinary differential boundary value problems. The versatility and convergence 
properties of this method are demonstrated by the solution of several representative 
cases. The following cases discussed herein for which the diffusion coefficients are 
functions of concentration possess solutions with differing stabilities and rates of con- 
vergence: 

D = &(I + ~CiCo), D,(l + 4Co + BC2/G2h Do/(1 + WCo + iWCo% 

Do/(1 - 4/C,), Do/(1 - aC/C,)2, DOeac’co and D,(oc + /3 log (r + SC/C,)). 

I. Im0DUCTI0N 

One-dimensional unsteady-state diffusion problems in a semi-infinite medium 
for which the diffusion coefficient is a function of concentration may be solved 
by a variety of methods [l]. Generally, the methods reduce the nonlinear partial 
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differential equations to ordinary differential equations by means of Boltzmann’s 
transformation followed by a numerical solution of the resulting nonlinear equa- 
tions. For example, Heaslet and Alksne [2] have solved the case of diffusion from 
a fixed surface with D = D(P) by means of an elegant series expansion of the so 
transformed nonlinear ordinary differential equation. However, the use of alter- 
native similarity variables based on transformation group concepts and depending 
on the form of the diffusion coefficient and on the boundary conditions has been 
suggested by Ames [3]. 

In this paper we present the results of a new iterative method for numerically 
solving the one-dimensional unsteady-state diffusion equation with concentration- 
dependent diffusion coefficient. Our work also employs Boltzmann’s transforma- 
tion to obtain the nonlinear ordinary differential boundary value form of the one- 
dimensional diffusion equation. We also introduce an additional transformation, 
an error function transformation, which is able to reduce the computation time 
and overcome the difficulty of determining the finite value of distance at which 
the concentration vanishes. The resulting boundary value problems are then solved 
by a finite difference method or superposition method combined with a quasi- 
linearization technique developed by Bellman and Kalaba [4] for obtaining 
numerical solutions of certain classes of nonlinear differential equations. 

The nonlinear ordinary differential equation for diffusion is a two-point 
boundary-value problem. Such equations have been solved by others, barring 
analytical solution, by shooting methods (trial and error) or by the finite-difference 
method. Each method has its advantages and disadvantages and there is still no 
established numerical technique for this problem in general [5, 61. Essentially, 
the quasilinearization algorithm is a generalization of the Newton-Raphson 
scheme applicable to functional equations [7, 81. By quasilinearization we imply 
that through a functional Taylor’s series expansion a nonlinear ordinary differential 
equation may be converted to a linear differential equation with variable coefficients 
for which a recursion relation may be constructed which is able to be solved 
numerically as a linear boundary-value problem by the finite-difference or super- 
position method. By quasilinearizing the nonlinearity difficulties associated with 
the finite-difference or superposition methods are circumvented. The advantage 
of this technique is that a recursive solution of the linearized equations has the 
property of quadratic convergence. Using this technique we can solve cases with 
a variety of diffusion coefficients. With an approximate initial guess of the concen- 
tration distribution and by a rough estimation of the finite distance at which the 
concentration vanishes, only four to nine iterations are needed to obtain a five 
digit accuracy. 
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II. MATHEMATICAL DEVELOPMENT 

The equation for one-dimensional diffusion when the diffusion coefficient D is 
a function of concentration C is 

aqat = ajaxp(ac/ax)], (1) 

where t is time, and x is distance. We select the boundary conditions (semi-iniinite 
medium) 

c = co, x = 0, t>O 

c = 0, t = 0, all x. (2) 

By Boltzmann’s transformation, C may be expressed in terms of a single variable 
and Eq. (1) may be reduced to an ordinary differential equation. Define 

c = c/c, and j = x/(4D,t)1/2, 

then Eq. (1) becomes 

d/dJ(D dc/dj) + 2J(dc/dj) = 0 

with boundary conditions 
c = 1, j7 = 0, 

c = 0, y = co. 

Equation (3) may be expressed as 

d%/dj? +f(c)(dc/dj)2 + 2jg(c) dc/dJ = 0, 

where 

(3) 

(4) 

(5) 

An additional transformation, an error function transformation, arises from 
the solution of the unsteady state diffusion problem in a semi-infinite medium 
with constant diffusion coefficient. 

Define 
z = erf kjj = erf y, (6) 

where k is an arbitrary constant and erf is the error function. If we substitute 
Eq. (6) into Eq. (5), we obtain 

i.e., 

dzc/dz2 + f(c)(dc/dz)2 + & ye”‘[g(c)/k2 - l] dc/dz = 0, 

d2cldz2 = F(dc/dz, c, y) 

(7) 

(7)’ 
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with boundary conditions 

c = 1, z = 0, 

c = 0, z= 1. 

1. Quasilinearization Combined With Finite Diference Method [7] 

Now let us consider the functional equation given by Eq. (7)’ with accompanying 
boundary conditions, Eq. (4). By applying the quasilinearization technique we 
may linearize Eq. (7)’ to the form 

d2c,+,ldz2 = F&&iz, c, , Y) + F&W% c, , yW,+#z - dc,ld.) 
+ Fc’,(Wdz, G > Y)(c~+I - 4. (8) 

Fc, and F, represent differentiation of F with respect to dc/dy and c, respectively. 
The subscript n denotes the n-th iteration. Upon substituting Eq. (8) into Eq. (7) 
we obtain 

where 

d2cn+,ldz2 + Pn(dcn+hW + Qncn+~ = Rn 3 (9) 

P, = 2f(c,) dc,/dz + V’T yey2 [&J/k2 - 1 I, 

Q, = df(c,Jldc, (dc,$W2 + v’r ve~“/k2(dg(c,)ldc,)(dc,/dz), 

&a = fbJ(&/dz)2 + c,(df(c,)/dc,)(dc,/dz2)2 
+ dr yey2/k2 Mcn)/dcn)(dc,ldz) G . 

In order to solve the system of equations given by Eq. (9) the finite-difference 
method is utilized to avoid stability difficulties. Let c,(m) denote the value of c at 
position mdy in the n-th iteration; then, the first- and second-order derivatives, 
dc,+,/dz and d2c,+Jdz2, can be replaced by the following difference equations: 

dcn+lldz = VW)k,+dm + 1) - cn+dm - 1)19 (10) 

d2c,+l/dz2 = ll(42k,+l(m + 1) - 2c,+dm) + c,+dm - 01. (11) 

z is divided into N equal intervals. Upon substituting Eqs. (10) and (11) into 
Eq. (9) the following N - 1 simultaneous algebraic equations are obtained: 

(1 + P,(m) 4zP) c ,+dm + 1) + (-2 + Q&WW2> cn+dm) 
+ (1 - P,(m) 442) c,+dm - 1) 

= (LIz)~ R,(m). W) 
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E, = 1 + P,(m) AZ/~, 

&, = -2 + Qn(m>W2, 
A, = 1 - P,(m) AZ/~, 

the N - 1 simultaneous algebraic equations can be represented by 

AC = B, (13) 

where matrix A is tridiagonal. The matrices A, C and B can be represented as 

A= . . . 
. . . 

As-1 b-1 

GE+,(l) 

c = c?%,(2) 

i . i 

) 

cn+,G - 1) 

--A,c,+dO) + @W2 Kdl) 
(4~)~ M2) 

B= . . . 
. . . 

(W &(N - 1) - fLcn+#V 

From the boundary conditions, Eq. (4), matrix B is reduced to 

--A, + (412 Ul) 

B= 

In Eq. (1% c,+~ is the unknown variable. The value of c, is considered known 
and is obtained from the previous iteration. Since c, is known, c,+~ can be obtained 
by solving Eq. (13). With c,+~ known, the results of the next iteration c,+~ can be 
obtained by the same prodecure. Iteration is continued until satisfactory conver- 
gence is obtained. 
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2. Quasilinearization Technique Combined With The Superposition Method 

It is difficult to obtain a convergent solution for some cases when we employ 
the above technique. For such cases in order to solve the system of equations given 
by Eq. (7) the superposition method is utilized. We employ a further transforma- 
tion, the s-transformation [l]. The new variable S, defined by the relation 

enables some improvement in the rate of convergence. On using the s-transforma- 
tion, Eq. (7) becomes 

(d2s/dz2) + ~VT yews/k2 g(s)(ds/dz) = 0 (14) 

with boundary condition 

s= 1, z = 0, 

s = 0, z= 1. 
(15) 

Equation (14) can be reduced to a system of first-order differential equations by 
the substitutions 

dsjdz = w, 

d2sldz2 = dwldz. 
Wi) 

Equation (14) is now reduced to the following equivalent system of two hrst-order 
equations : 

dsldz = w, 
(17) 

dw/dz = - dr yeYe [ g(s)/k2 - I] w. 

By using the quasilinearization technique, Eq. (17) can be linearized to 

where 

ds,,,ldz = wn+l 3 

dw,,Jdz = - F’w,+~ - Qs,+~ + i?, 
(18) 

P = v’n- yel’ [g(sJk2 - 11, 

Q = V’T yeu2/k2 (dg(s,dlds,) w, , 

R = drr yey2Jk2 (dg(s,)/ds,) w,s, 
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with boundary conditions 

s - 1, Il+1 - 2 = 0, 

s - 0, n+1 - z= 1. 
(19) 

The system represented by Eqs. (18) and (19) constitutes a linear boundary 
value problem which can be solved by the superposition method. Let ~~,~+r and 
w,,,+~ be any set of particular solutions of Eq. (18). Let shj,n+l and w~~,%+~, 
j = 1,2 be any two sets of nontrivial and distinct homogeneous solutions of the 
homogeneous equations 

&,,,ldz = wn+l , 

dw,+Jdz = - Pw,+~ - Qsn,, . 

Then the solution of Eq. (18) can be represented by 

(20) 

&I+1 = s,,n+1 + whl.a+1 + a2Whl.n+l, 

(21) 
W n+1 = w,,n+1 -k alWhl.n+l + a2Wh2.n+l ? 

where the unknown constants, a, and a2 will be determined by using boundary 
condition, Eq. (19). The set of particular solutions and the two sets of homogeneous 
solutions can be obtained by numerically integrating Eqs. (18) and (20), respec- 
tively. 

If the initial conditions used in obtaining the particular and homogeneous 
solutions satisfy the given initial condition of Eq. (19), the number of homogeneous 
solutions is reduced to one only. Hence Eq. (21) can be reduced to 

s n+1 = s,*n+1 f aSh,lz+l , 

W ?a+1 = w,*n+1 -t aWh,n+ly 
(22) 

where the unknown constants a can be determined by -SD,n+l/Sh,n+l . Once a is 
obtained, the general solution of Eq. (18) can be obtained by using Eq. (22) and 
the newly obtained particular and homogeneous solutions. With s,+r and w,+~ 
known, the results of next iteration s,+~ and w,+~ can be obtained by the same 
procedure. The initial conditions used are 

(23) 

and 

(24) 
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III. NUMERICAL RESULTS AND DISCUSSION 

The verification of the validity of the method developed above was obtained 
by solving the diffusion equation for constant diffusivity. 

If the diffusion coefficient is constant, Eq. (1) reduces to 

I .( 

0 

“lgO 

0, 

0 

0 

acjat = qaqaxy, 

‘Da=25 

.u cl = 5.0 

3) a = 7.5 

6‘ CL = 100. 

1 IO 2.0 3.0 .4.0 5.0 6.0 70 s;( 

Y’- 
14Dot,i 

FIG. 1. Concentration-distance curve for D = Do(l + a-C/C,,). 

YE-, 
(4DJ I’ 

(25) 

FIG. 2. Concentration-distance curve for D = D,(l + EC/C, + /X2/C,*). 
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FIG. 3. Concentration-distance curve for D = DO/(1 + c&/C, + /3Ca/Coa). 

(2 a=o.e 
a a=o.9 

G u = 0.95 

gg 01 = 0.98 

FIG. 4. Concentration-distance curve for D = Do/(1 - C&/C,). 

with, for example, boundary conditions given by Eq. (2). The exact solution of 
Eq. (25) with these boundary conditions is 

I.e., 
C/C, = erfc ~/(4D,t)l/~, 

C = erfc ji, 

P-9 

where erfc is the complementary error function. We may compare, in this case, 
the quasilinearization solution of Eq. (25) with the exact solution. The difference 
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between the numerical and exact solutions was found to be less than 4 x 1O-5 
over the entire range of reduced concentration variable. 

To illustrate the use of the quasilinearization scheme as applied to the general 
nonlinear diffusion equation with variable (concentration dependent) diffusion 
coefficients we consider the following representative cases: D = D,(l + d/Co), 
D,(I i- aC/C, i- pCz/C,2), D&l - WC/C,,), D,/(l - &/C,J2, D,,ebcIco, and 
&(a + fl hdy + SW,>>> w  h ere 01, j3, y, and 6 are constants. In this notation D, 
is the diffusion coefficient for the concentration C = C, at x = 0. 

The numerical results for these cases are shown in Figs. l-7. The data are 

FIG. 5. Concentration-distance curve for D = &,‘(I - 

o/s 

0 
0.6 

&=20 @ j&i=50 
04 

\ 

00, 0.0 1.0 2.0 3.0 35 

9 ea = I 

1.0 2.0 3.0 4.0 5.0 6.0 

nci. 6. Concentration-distance curve for D = D,e*ciCo. 
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0 ‘01’1, fl=5, y=I,S=l 

0 a=o5, fl=-05, y=o,B=I 
0 0’1, p=l. y=l, 6=l 

0.0 I I 
00 0.5 I .o 1.5 2.0 2.5 

FIG. 7. Concentration-distance curve for D = D& + b log(y + SC/C,,)]. 

presented in a form similar to that used by Crank to which we refer the reader 
for comparison [l, Chap. 121. The results are plotted as c versus j. The method 
of quasilinearization combined with the finite difference method can be applied 
to solve all cases shown in Figs. l-7 except D = Doeaclco if ea = 200 and 
D = D,(l + cyC/C,,) if 01 = 50 and 100. It is difficult to get convergent solutions 
for these three cases when the quasilinearization technique is combined with the 
finite difference method. The quasilinearization technique combined with the 
superposition method is used to solve the above three cases. 

The initial guess of the concentration profile is 1 - z; i.e., erfc kp. This is 
based on the analytic solution of the diffusion equation with constant diffusivity, 
Eq. (26). The transformation from j to z is given by z = erf kjj, where k is a 
constant. By this error function transformation the semi-infinite range is trans- 
formed into the range between 0 and 1. Hence the size of the mesh is reduced and 
the required computer storage space and computation time are considerably 
reduced. The choice of k depends upon j&, , the finite value of j at which the 
concentration vanishes. However, as we need not know the exact value of j it is 
estimated; the value of k is chosen to make erf k7, m 1. For example, for the 
e” = 10 case the range of k is from 0.4 to 1; i.e., the rough value of j& is from 
2.8 to 7.0. The results for this case are independent of the value of k in this 
range. 

When the quasilinearization technique combined with the finite difference 
method is employed, the size of AZ is 0.005. With 1 - z as initial guess the correct 
solutions are obtained in four to nine iterations, with accuracy to the fifth decimal 
place. The rate of convergence of the concentration distribution function for 
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D = D,eac/co and D = D,/(l + C/C,, + C2/Co2) is shown in Figs. 8 and 9, 
respectively. 

When the employ the quasilinearization technique combined with the super- 
position method, the Runge-Kutta fourth-order integration method is used to 
obtain the particular and homogeneous solutions with the initial conditions 
given by Eqs. (23) and (24). The integration interval is taken to be 0.0001. Only 
four to nine iterations are needed to obtain a five-digit accuracy. 

The method of quasilinearization combined with the superposition method 
is unstable under certain conditions [8]. For example, during the process of iteration 

z=erf k- [ 1 (4q)t)i 

0 

FIG. 8. Convergence rate of C/C, for D = D,e”cIco with ea = 10 and k = 0.5. 

0.6 

v’s 0.4 

0.0 
0.0 0.2 0.4 0.6 0.6 1.0 

z=erf Eig$] 

FIG. 9. Convergence rate of C/C, for D = Do/(1 + C/C,, + Cz/C,,a) with k = 1.0. 
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one or more values of the particular and homogeneous solution can become 
unreasonable. Extremely large or small values at the end point of the problem are 
encountered so that the final boundary condition cannot be fulfilled. Since the 
linear differential equation is obtained by approximation from complex nonlinear 
differential equations, these unreasonable values should be expected under certain 
conditions. These difficulties can be overcome by the use of the finite difference 
scheme. 

In general, the quasilinearization technique combined with the finite difference 
method is an effective tool for solving unsteady state diffusion problems with 
variable diffusion coefficients. However, in the finite difference scheme we must 
calculate first-order derivatives [cf. Eq. (9)]. The numerical evaluation of derivatives 
by a digital computer is inaccurate. When a function has an abrupt discontinuity 
in its derivative as in Fig. 10, the finite difference method is not suitable. If quasi- 

z = erf 

FIG. 10. Concentration and its slope distribution for D = D,(l + QC/C,) with 01 = 100 
and k = 0.238. 

linearization is combined with the superposition method, it is necessary to solve 
simultaneous first-order differential equations. The calculation of first-order 
derivatives is then obviated. Although an s-variable transformation can improve 
the rate of convergence, the relationship between s and c is nonlinear in some 
cases. The solution of nonlinear algebraic equations influences the accuracy 
of c and requires additional computation time. Figure 10 also shows the relation- 
ship between c, s, w  and z for D = D,(l + oC/C,) with 01 = 100 and k = 0.238. 

Even if the boundary conditions are nonlinear we can apply the quasilineariza- 
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tion technique to linearize the boundary conditions. We may thus avoid the 
cumbersome traditional analyses [I] for solving concentration-dependent unsteady- 
state diffusion problems. The method used here is also applicable to heat conduction 
when thermal conductivity is a function of temperature. More detailed discussion 
of the advantage and disadvantages of the quasilinearization technique can be 
found in the literature [4, 6-91. 
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